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Introduction

The only method known to treat field theories non-perturbatively without approximations is

Lattice Field Theory

LQCD = − 1

2g2
0

Tr{FµνFµν} +
∑

f

Ψ̄f{D +mf}Ψf

Discretize this system in a space-time lattice preserving:

• gauge invariance

• locality

• unitarity

Chiral symmetry for mf → 0 is hard to implement (Nielsen-Ninomiya Theorem ):

• Wilson fermions :
∑

f Ψ̄f{D +m0 + aD2}Ψf

• Staggered fermions : maintain a chiral U(1) but break flavour symmetry
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Becomes a finite calculation...

〈O〉 =

∫
D[Aµ] O det(D +mf) e

−Sgauge
∫
D[Aµ] det(D +mf)e−Sgauge

but (T/a) × (L/a)3 × 8 × 4 integrals! Ex: a = 0.1fm, L = 2fm, L/a = 20

The calculation requires statistical methods → Monte Carlo approach

Universality warranties that, once we properly renormalize and take the a → 0 limit, we obtain

QCD but...

• Wilson fermions: fine tunning to flow to the chiral continuum theory

• Staggered fermions: Nf = 4n

Getting rid of the additional flavours requires modifications that do not obviously preserve

locality

det(D +mf) → [ det(Dstaggered +mf)]
Nf/4

Quenching remains an embarrasing but necessary approximation: neglect fermion loops

det(D +mf) → 1
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In spite of the fact that the progress in this field would not have been possible without the

exponential growth of the computer speed:

K.Jansen, Lattice Forum

Quenched QCD can be simulated in small PC clusters affordable to smaller groups!

There is no iff : the brute force method does not take you very far
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Other aspects are equally essential:

• Numerical algorithms : can get you orders of magnitude!

• Improved actions

All lattice actions that preserve the symmetries of the continuum theory and have the same

particle content lead to the same continuum limit: Universality

However you can speedup the approach to this limit by choosing a better action

• Asking the right questions

The lattice allows us to do experiments that we cannot do in the laboratory. We can setup the

degrees of freedom in QCD in different (unphysical) conditions that are useful to prove different

properties of the system:

V, m 6= mphys, ν

I will illustrate recent progress in the field by showing some selected examples of all these
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Disclaimer:

• I cannot cover all the interesting results in this field: O(250) contributions to Lattice2003

• Mostly concentrated in QCD. Not cover promising new ideas to deal with SUSY theories

D.Kaplan et al, JHEP 0305 (2003);hep-lat/0302017;hep-lat/0307012

• I will not provide new world averages for CKM fits:

FBd/Bs, BBd/Bs
, ξ, BK

See:

EPS Parallel talks:

Heavy flavour physics by J. Heitger, C. Tarantino and H. Wittig

Light quark physics by L. Giusti

EPS Plenary Talk by S. Stone

CKM-Lattice Working Group:http://www.cpt.univ-mrs.fr/ldg

CERN CKM report: hep-ph/0304132

• For more technical accounts on these and other topics:

Plenary sessions at Lattice 2003: http://www.rccp.tsukuba.ac.jp/lat03/
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Algorithmic improvements

I. Confinement and the QCD string:

The linear growth of the potential between an infinitely heavy (static) quark and antiquark

lim
r→∞

V (r) = σr σ : string tension

Both this feature and the fact that resonances fall in Regge trajectories:

Ji ∼ m2
i

gave rise to the idea that non-abelian Yang-Mills theories could be (effective) string theories

Q
_

Q

In its less ambitious formulation, this correspondence implies that the low energy degrees of

freedom are the ”stringy” excitations of the thin flux tube that forms linking color charges:

Seff =

∫ ∫

dz0dz1
1
2∂ah∂ah+ ...
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There is a universal prediction of this picture: V (r) = σr + µ− π(D−2)
24r + O

(
1
r2

)

The Lüscher term is the same for all the string theories in the same universality class (depends on

the number of bosonic and fermionic degrees of freedom)

Algorithmic challenge

On the lattice the static potential is measured from the correlation function of two large Wilson

loops or Polyakov loops:

lim
T→∞

〈P (r)P
∗
(0)〉 = e

−TV (r)
{

1 + O
(

e
−Tε
)}

P (r) ≡ Tr [U0(~x, a)U0(~x, 2a)....U0(~x, Ta)]
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This is a difficult measurement because signal/noise decreases exponentially with the loop size:

〈P (r)P ∗(0)〉 ∼ e−σrT

while the noise is approximately constant

Ex: increasing ∆A ∼ 1fm2, implies that the statistics has to increase by 3 × 104 for constant

signal/noise!
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Only in simple gauge theories such as 3d Z(2), the Lüscher term had been computed reliably

Caselle, et al 1996

Recent achievement: algorithm for any gauge theory Lüscher, Weisz JHEP0109(2001),0207(2002)

Using the locality of the action:

〈Product of links〉 = Product(〈Product of links 〉sublattice)
↓ ↓

n ∼ eαrT n ∼ eαr

At least O(10 − 100) more precise than previous calculations: V ′(r) = σ + π(D−2)

24r2
+ ...
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This is completely consistent with the effective string picture of QCD, and it is a strong constrain

to the dreams of a fundamental equivalence between Yang-Mills and string theory!
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String breaking from Wilson loops

If you consider the static potential between adjoint charges, the string is expected to break

because adjoint charges can be screened by gluons:

GadjQ QadjG
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adjoint static potential
8/3 fundamental static potential
adjoint unbroken string energy

2 M(Qg)

Kratochvila,de Forcrand, hep-lat/0306011

SU(2) in 3D

T ∼ 2fm to observe string breaking!
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II. QCD at finite density:

Rajagopal 1999

Algorithmic challenge

Infamous sign problem: the fermion determinant at finite µ is not positive definite and Monte

Carlo methods fail

Z[µ, T ] =

∫

DAµ detM(µ, T ) e−Sgauge(T )

︸ ︷︷ ︸
not a probability!
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Recent achievements New methods to explore µB ≤ 500MeV (RHIC, µB ≤ 50)

• Multiparameter reweighting Fodor, Katz PLB534(2002)

Z[µ, T ] =

∫

DU detM(0, T0) e
−Sg[U,T0]

︸ ︷︷ ︸

importance sampling

detM(µ,T ) e−Sg[U,T ]

detM(0,T0)e−Sg[U,T0]
︸ ︷︷ ︸

observable

=

〈

det(M(µ,T )) e−Sg[U,T ]

det(M(0,T0)) e−Sg[U,T0]

〉

µ=0,T0

• Taylor expansion in µ/T : much faster! Alltonet al PRD66(2002)

• Analytic continuation iµ → µ through Taylor expansion de Forcrand, Philipsen NPB642 (2002)
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f
=2, de Forcrand et al

N
f
=2+1, Fodor et al

N
f
=2, Allton et al

N
f
=4, D’Elia et al

Good agreement for µB < 500MeV

Location of the tricritical point (?)

Laermann, Philipsen hep-lat/0303042
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Improved actions

Symanzik improvement:

Cutoff effects at finite a can be acounted for by the most general Lagrangian including higher

order operators compatible with the lattice symmetries:

Seff =

∫

d
4
x
{

Ld=4
0 (x) + aLd=5

1 (x) + a
2Ld=6

2 (x) + ...
}

Wilson fermions: L1 = c1Ψ̄σµνFµνΨ → scaling violations of O(a)

Staggered fermions: L1 = 0 → scaling violations of O(a2)

In all cases L2 contains many new couplings...

Observ(a) = Observ
[

1 + aΛ1 + (aΛ2)
2 + ...

]

We can get rid of the term of O(a), by tuning the coupling c1 → 0 non-perturbatively

Symanzik 1983; Sheikholeslami, Wohlert 1985; ALPHA coll. 1996
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O(a) improvement has been implemented systematically for Wilson fermions for the action and

quark bilinear operators

Sharpe ICHEP1998

Caveats:

• The size of the Λ′
is is not known a priori: a continuum extrapolation is still needed

• The Λ′
is can vary from observable to observable

• Partial improvements make extrapolations, when there is a sizeable change, more complicated

The improvement of the weak Hamiltonian (4-fermion operators in ∆B,∆S transitions) remains

an enormous challenge → exact chiral symmetry seems the only hope
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Ginsparg-Wilson fermions

Lattice Dirac operators can be constructed which are local, do not suffer from the doubling

problem and satisfy the Ginsparg–Wilson (GW) relation:

{D, γ5} = aDγ5D ↔ {D−1
xy , γ5} = aγ5δxy

Ginsparg and Wilson PRD25 (1982)

From a RG blocking procedure from the continuum

e−ψ̄D
′ψ =

∫

DφDφ̄ exp
{
−(ψ̄ − φ̄)R(ψ − φ) − φ̄Dφ

}

R is generically not chirally symmetric (e.g. proportional to unit matrix)

γ5D
′ +D′γ5 = 2D′γ5R

−1D′

They realized that Ward identities associated with a standard chiral transformation are satisfied

on shell at finite a:

limm→0〈δxχSf O(y)〉 = 0, |x− y| 6= 0
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No explicit construction was found then and it fall in oblivion until P. Hasenfratz rediscovered it

in 1997 and realized that his fixed-point Dirac operator satisfies it

(D
FP

)
′
= D

FP

P. Hasenfratz, NPB Proc. Suppl. (1998)

But the fixed-point Dirac operator is not an explicit construction either and truncation were

needed...

Domain-wall in 5 dimensions

An infinite domain-wall (DW) in 5D leads naturally to chiral fermions in 4D

Rubakov, Shaposhnikov, PLB125 (1983)

Callan, Harvey, NPB250(1985)
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On the lattice the DW construction a , as, Ns :

Kaplan, PLB288 (1992);

Shamir, NPB406 (1993);

Narayanan, Neuberger, NPB412 (1994)

Ns → ∞ at finite a and as , we expect two lattice ”chiral” fermions → satisfies GW relation !
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The effective action and propagator of the light boundary fields can be described in terms of 4D

operator aDNs which satisfies GW in Ns → ∞:

lim
as→0,Ns→∞

aDNs = aDov = 1 − γ5sign(Q) Q ≡ γ5(m0 − DW)

Neuberger, PLB417 (1998)

Dov was the first explicit construction of GW fermions: {D−1
ov , γ5} = aγ5

Neuberger, PLB427 (1998)

• Has the right continuum limit

• No doublers

• In spite of its looks, it is a local operator:

||Dov(0, r)|| ≤ e−γ|r|/a

H., Jansen, Lüscher NPB552 (1999)
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The GW relation implies an exact symmetry :

δχΨ = ε γ5(1 − aD)Ψ δχΨ̄ = εΨ̄γ5 → δχSf = 0

Lüscher PLB428 (1998)

UA(1) anomaly is recovered due to the non-invariance of the fermion measure under a singlet

chiral rotation:

〈δχO〉F = Tr [γ5(1 − aD/2)] 〈O〉F

i λ−

5
Re

Im

2/a0

x

x

γ

Tr[γ5(1 − aD/2)] = Nf × index(D)

A GW operator satisfies an exact index theorem and topological sectors can be distinguished!

Hasenfratz, Laliena, Niedermayer, PLB427 (1998)
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Flavour symmetry is exact:

ΨR,L = P̂±Ψ Ψ̄L,R = Ψ̄P±

with P± ≡ (1 ± γ5)/2, P̂± ≡ (1 ± γ5(1 − aD))/2

Ψ̄DΨ = Ψ̄LDΨL + Ψ̄RDΨR,

There is an exact SU(Nf)R × SU(Nf)R symmetry:

ΨL → VLΨL ΨR → VRΨR VL,R ∈ SU(Nf)L,R

Adding quark masses: Ψ̄LmΨR + Ψ̄Rm
†ΨL

• There is a conserved axial current in the chiral limit m → 0

• Operator classification and mixing is enormously simplified: four fermion operators only mix

with those in the same chiral representation

• Scaling violations are O(a2) : the exact chiral symmetry forbids all operators of d = 5 in the

action
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GW are expensive O(100) but feasible in the quenched approximation!

L = 1 − 3 fm, a = 0.08 − 0.2 fm

0 0.5 1 1.5 2 2.5 3 3.5

m/m
ref

0

3

6

9

12

15

(r
0M

P
)2

RBC Coll.
GHR
HJLW
S. J. Dong et al. 
BGR  Coll.
CH

Review by Giusti, hep-lat/0211009

Two recent applications:

• BK

• QCD versus Random Matrix Theory (RMT)
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Ciuchini, et al, hep-ph/0307195
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B
K
 from Quenched QCD

H∆S=2 = CW (µ)O∆S=2(µ) + ...

〈K̄0|O∆S=2(µ)|K0〉 = 8
3M

2
KF

2
KBK(µ)

Obare
∆S=2 = [s̄(V −A)d][s̄(V −A)d]

See Giusti’s parallel talk

K0 − K̄0 mixing has been a big challenge for the lattice:

• Wilson fermions: mixing with other chiral structures V × V −A×A, S × S ± P × P ,

T × T ...Recently smart tricks to get rid of these mixings

Frezzotti et alJHEP0108(2001); Becirevic et al, PLB487(2000); Guagnelli et al NPPS 106 (2002)

• Staggered fermions: mixing with other flavour breaking structures. Renormalization done

perturbatively

With GW only multiplicative renormalization:
Non-perturbative renormalization (vs. staggered)

Scaling violations of O(a2) (vs. Wilson)

}

Competitive!
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QCD and RMT

Iff there χSB, the QCD partition function at fixed topological charge is conjectured to be

equivalent to that of a Random Matrix Theory: Shuryak, Verbaarschot 1993

lim
N→∞,mρ(0)N=fixed

Z
RMT
ν (m) = lim

V→∞,mΣV=fixed
Zν(m)

ZRMT
ν ≡

∫

dW

Nf
∏

f=1

det(iM +m) exp
[

−N/2TrV (M2)
]

,

M =

(

0 W †

W 0

)

, where W are random complex matrices of rectangular size N × (N + ν)

If ρ(0) 6= 0, spectrum close to zero in the microscopic limit is universal (independent of V (M))

ρν(λ) =
Σζ

2

(

JNf+ν(ζ)
2 − JNf+ν−1(ζ)JNf+ν+1(ζ)

)

ζ ≡ λΣV

Verbaarschot, Zahed, PRL70(1993)
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Chiral symmetry is essential to test this conjeture using the lattice

Previous simulations with staggered (not in the same universality class at finite a) and GW

fermions very far from the continuum limit

Review by P.H. Damgaard, hep-lat/0110192

a = 0.09 fm, L = 1.1 fm

 0
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 0  1  2  3
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SU(2) fund.

SU(3) fund.

SU(3) adjoint

L = 12

Bietenholz, Jansen, Shcheredin hep-lat/0306022

Three Universality classes:

Complex: SU(Nf) × SU(Nf) → SU(Nf) ChUE

Pseudo-real: SU(2Nf) → Sp(2Nf) ChOE

Real: SU(2Nf) → SO(2Nf) ChSE
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Optimized algorithms for overlap fermions (Giusti et al. hep-lat/0212012 ) have made possible to test

RMT at larger volumes

The agreement of the ratios of the averages of individual eigenvalues is truly remarkable!

a = 0.09 fm, L = 1.5 fm

〈λi〉ν
〈λj〉ν
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4/2

4/3

ν=0 ν=1 ν=2

Giusti, Lüscher, Weisz, Wittig in progress

• Similar results at smaller a = 0.07fm

• At smaller L ∼ 1.2 fm deviations from RMT are clearly measured

• This will probably provide the most precise determination of Σ
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Ask the right questions

A typical problem in lattice QCD is the two or multi-scale problem:

λlight � λheavy

The requirements are:

λheavy/a � 1 → small cutoff effects

λlight/L � 1 → small finite size effects

L/a has to be increased by a factor ∼ λlight
λheavy

with respect to the one-scale problem

This situation is present in:

• Heavy quark physics: λlight ∼ Λ−1
QCD � λheavy ∼ m−1

b

• Light quark physics: λlight ∼ m−1
π � λheavy ∼ Λ−1

QCD
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Heavy Quark Physics

The lattice can in principle provide precise numbers for many quantities of phenomenological

interest:

FB,Bs, BB,Bs, ξ ≡ FBs
√
BBs

FBd
√
BBd

〈M |O∆M=2|M〉 =
4

3
m

2
MF

2
MBM 〈Bd|b̄γµγ5d|0〉 = ipµFBd

A lot of results have been obtained in recent years using a plethora of methods to overcome the

two-scale problem

Unfortunately, errors are mostly dominated by systematics associated to the approximations: the

uncertainty in systematic errors is large!
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• Class A: relativistic heavy quarks

Lattice sizes can accomodate reliably quarks in the charm region! With O(a)-improved

Wilson action cutoff effects are under control

Rolf, Sint JHEP 0212(2002) Jüttner, Rolf, PLB560(2003)

m
MS
c (m

MS
c ) = 1.301(34) FDs = 252(9)MeV

However, large extrapolations are needed mh → mb and this is specially dangerous in the

presence of large cutoff effects

lim
mh→mb

lim
amh→0

O(mh, amh)
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Hyperfine splitting in charmonium in the quenched approximation:

�� �� �� � � �� � �� 	


�� �� ��
�� �  � �

� � � 	� � � ��

�� � ��� � � � 	

��
�� � � �

��� ������� ������ � ��

� � �
� � �

� �
� �

� �
� �

�

�� �� �� � � �� � �� 	


�� �� ��
�� �  � �

� � � 	� � � ��

�� � ��� � � � 	

 "! �# � �%$ ! �

��
�� � � �

��� ������� ������ � ��

� � �
� � �

� �
� �

� �
� �

�

QCD-TARO coll. hep-lat/0307004

∆M = M(J/ψ) −M(ηc) = 77(2)(6)MeV

Experiment :117MeV

– Non-perturbative improvement is very important for reliable continuum extrapolations!

– Quenching effects are large for this quantity.
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• Class B: non-relativistic expansion in
ΛQCD
mb

LHQET = Ψ̄hD0Ψh −
1

2mb

Ψ̄hD
2
Ψh −

cσ

2mb

Ψ̄hB · σΨh + O
(

ΛQCD

mb

)2

Use the effective theory on the lattice instead, since the cutoff can be much lower than mb!

Matching and renormalization of the effective theory must be done non-perturbatively because

there are generically power divergences:

Matching at l loop ⇒ ∆ck ∼ g
2(l+1)
0

a
∼ 1

aln(aΛ)l+1

a→0−→ ∞

The continuum limit cannot be taken!

Using HQET at NLO implies that we remain with uncertainties O
(

ΛQCD
mb

)2

, but it is important:

• Combining the static limit with the relativistic approach allows an interpolation to mb

• The non-perturbative determination of the couplings and matrix elements in HQET is very

valuable information for continuum phenomenology
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Recent progress: heavy quark physics in the quenched approximation can enter the

no-systematic-error era with the use of finite-size scaling techniques

Class A: the b-quark can be simulated in a small volume L0mb � 1,mba � 1, L0ΛQCD ≤ 1

Guagnelli et al, PLB546(2002); de Divitiis, et al hep-lat/0307005, 0305018

O(mh,ml, L0) → large finite volume effects

Define a step scaling function: σ(mh,ml, L) ≡ O(mh,ml,2L)

O(mh,ml,L)

O(mh,ml, 2
n
L0) =

n−1∏

i=1

σ(mh,ml, 2
i
L0) O(mh,ml, L0)

The main observation is that the step functions:

• are finite as a → 0

• are very smooth functions of mh: constant up to O(1/mhL) since O(ml/mh) cancel
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The series of step functions can be computed in a series of lattices with increasing a and L and

roughly fixed amh and mhL:
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σ(0.8fm), a < 0.1fm → 0,mh > mb/4 → mb

The extrapolation to mb in the largest volume is a 6% effect as opposed to a 20% effect in the

standard relativistic approach!
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New results on fB,Bs, fD,Ds,Mb with significantly smaller systematic uncertainties (other than

quenching !)

 MILC 2002

 CP-PACS 2001

 JLQCD 1998

 FNAL 1998

 MILC 1998

 Rome-II 2003

 ALPHA 2003

 UKQCD-LL 01

 UKQCD 2001

 APE 1999
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 JLQCD 2000

 GLOK/SGO 98
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 CP-PACS 2001
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 MILC 1998
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 UKQCD-LL 01

 UKQCD 2001

 APE 2001

Wittig’s parallel talk
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Class B: non-perturbative matching and renormalization of HQET at finite volume

Heitger, Sommer, NPPS106(2002); Heitger, Kurth, Sommer, hep-lat/0302019; Della Morte et al hep-lat/0307021

OQCD
(L,ml,mb) = OHQET (n)

(L,ml) + O
(

ΛQCD

mn+1
b

)

The running to L → ∞ is done using finite-size scaling in the effective theory and a−1 � mb:

Example: b-quark mass in the static limit

Γ(L) = energy of a state with the quantum numbers of a B in V= L4

experiment Lattice with amq � 1

MB = 5.4 GeV ΓQCD(L0,M)

? ?

Γstat(L2) Γstat(L1) Γstat(L0)��

σ(L0)σ(L1)

Li = 2iL0

MB︸︷︷︸
exp.

= ∆Γstat(2
2L0, a)

︸ ︷︷ ︸
a<0.07fm→0

+∆Γstat(2L0, a)
︸ ︷︷ ︸
a<0.05fm→0

+ ∆Γstat(L0, a)
︸ ︷︷ ︸
a<0.025fm→0

+ ΓQCD(L0,mb)
︸ ︷︷ ︸
a<0.0125fm→0

L0 = 0.2fm

with ∆Γstat(L, a) ≡ Γstat(2L, a) − Γstat(L, a)
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Results in the static limit for Mb and FB in the static limit:

m
MS
b (m

MS
b ) = 4.13(2)(4)GeV + O

(
Λ

mb

)

and more recently for FBs by interpolation between the relativistic and static result

Preliminary

FBs = 205(12)MeV

Heitger’s parallel talk

Same techniques can be applied to higher orders in O(1/mb)
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These new ideas have not yet been applied to matrix elements

New lattice ⊕ HQET determination at NLO of lifetime ratios and width differences show better

agreement with experiment:

NLO: M. Beneke et al; E. Franco et al; Dighe et al; Ciuchini et al

Matrix elements: Di Pierro, Sachrajda; Gimenez, Reyes; UKQCD; D. Decirevic et al; JLQCD

LO NLO Exp.
τ(Λb)

τ(Bd)
0.93(4) 0.88(5) 0.786(34)

τ(B+)
τ(Bd)

1.01(3) 1.08(2) 1.085(17)
τ(Bs)
τ(Bd)

1.00(1) 1.00(1) 0.951(38)
∆Γd
Γd

0.0024(6) 0.008(37)(18)
∆Γs
Γs

0.074(24) 0.07
(9)

(7)

See Tarantino’s parallel talk

37



Light Quark Physics

The approach to the regime of the light quark masses is one of the most difficult problems in

Lattice QCD both quenched and unquenched

mq ≥
ms

2
mPS ' MK

χSB: limm→0〈q̄q〉 = −πρ(0) 6= 0

λmin ∼ ∆λ ∼ 1
ΣV

Algorithmic problem:

• Quenched case: cost(D−1) ∼ 1/λmin efficient algorithms for Ginsparg-Wilson fermions

• Unquenched case: cost ∼ 1/λ3
min!

Two-scale problem: mPS � ΛQCD L � m−1
PS
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The standard approach: use χPT to extrapolate results at mq ' ms/2 → 0

This is the source of one of the most important systematic uncertainties both in light (e.g. Fπ)

and heavy quark physics (e.g. BBd
):

FPSr0 FBq
√
MBq

0.0 2.0 4.0 6.0

(r
0
m

PS
)
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)
2
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r 0

3
/2

Φ
P

s
0.0 2.0 4.0 6.0

(r
0
m

PS
)
2

1.2

1.6

2.0

r 0

3
/2

Φ
P

s

unquenched
quadratic

0.0 2.0 4.0 6.0

(r
0
m

PS
)
2

1.2

1.6

2.0

r 0

3
/2

Φ
P

s

chiral log (f = 93 MeV, g = 0.27)
chiral log (f = 93 MeV, g = 0.59)

f
B

s
 (partially quenched)

JLQCD coll.,hep-lat/0307039
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Lattice ⊕ χPT

The interactions of the light mesons at low momenta are determined to a great extent by the

pattern of chiral symmetry breaking

The QCD χ-Lagrangian incorporates automatically all the Ward identity relations and

parametrizes what is not determined by symmetry by a set of low energy constants

Weinberg, Gasser and Leutwyler

LQCDχ = L(2)
+ L(4)

+ ...

L(2)
χ =

F2

4
Tr
[

∂µU
†
∂µU

]

− Σ

2
Tr

[

e
iθ/NfMU + U

†
M

†
e
−iθ/Nf

]

L(4)
χ = L1Tr

[

∂µU
†
∂µU

]2
+ L2

(

Tr
[

∂µU
†
∂νU

])2
+ ...

with

M → quark mass matrix

U = ei2Φ/F Φ → light meson field

θ → the vacuum angle

The LECs: Σ, F, Li=1−10, ... parametrize the non-perturbative dynamics that is not determined

by symmetry
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The weak interactions responsible for weak decays as ∆S = 1 can also be included

L∆S=1 =
GF
2
√

2
sin θC cos θC

∑

i

CiW (µ)Oi(µ)

The O′
is transform as (27, 1), (8, 1) or (8, 8) under SU(3)L × SU(3)R : to leading order

there are only four operators

L∆S=1
χ = g(27,1)t

ij
kl

(

U∂µU
†)
ik

(

U∂µU
†)
jl

+ g(8,8)t̃
ij
kl
UikU

r
jl

+g
(1)
(8,1)

(

∂µU∂µU
†)

23
+ g

(2)
(8,1)

(

MU + U
†
M

†)
23

+ ...

The problem is that the matching should be done at mq → 0 and not at mq → ms!

• Higher order effects are important around ms

• Many couplings to determine: how many are necessary ?
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Matching of QCD and χPT is important:

• Check the range of validity of χPT

• Get rid of the systematic error in chiral extrapolations

• Get the low energy couplings which determine light hadron physics

They are rather poorly known from phenomenology

i αri (Mρ) ≡ 8(4π)2Lri (Mρ) O(NC) Source

2α1 − α2 −0.8 ± 0.8 O(1) Ke4, ππ → ππ
α2 1.7 ± 0.4 O(NC) Ke4, ππ → ππ
α3 −4.4 ± 1.4 O(NC) Ke4, ππ → ππ
α4 −0.4 ± 0.6 O(1) Zweig rule
α5 1.8 ± 0.6 O(NC) FK : Fπ
α6 −0.25 ± 0.4 O(1) Zweig rule

α7 −0.5 ± 0.25 O(1) GMO, α5, α8
α8 1.1 ± 0.4 O(NC) Mφ, α5

α9 8.7 ± 0.9 O(NC) 〈r2〉πV
α10 −6.9 ± 0.9 O(NC) π → eνγ

mu = 0 is connected to the value of 2α8 − α5, which cannot be determined unambiguously in

χPT

Kaplan, Manohar PRL56(1986); Leutwyler, NPB337 (1990)
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mu = 0 ?

Heitger et al NPB588(2000); UKQCD, PLB518(2001);Nelson et al, PRL90 (2003); Farchioni et al hep-lat/0302011

• Good statistical accuracy, but still a large systematic effect from χ extrapolations

• A unreasonable large unknown systematic effect would be needed to accomodate mu = 0!
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New developments

Match QCD and χPT at mq → 0 in a finite volume LΛQCD � 1. In this case, finite volume

effects are calculable within χPT provided ΛQCDL � 1!

Light quarks in a box: ΛQCDL � 1

mπ
−1

L L

mπ
−1

L

mπ
−1

mπL � 1:

FS ∼ exp(−mπL)

mπL ∼ 1:

FS ∼ 1/(FL)2
mπL � 1: if F 2m2

πV < 1

ε-expansion
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ε-expansion

If M2
PF

2V ' mΣV ∼ 1 the zero mode becomes non-perturbative signalling that spontaneous

symmetry breaking does not occur in a finite volume!

But the perturbative series can be reordered by factoring out the constant field configurations and

treating them as collective variables:

U = U0Uξ = U0 e
i 2ξ(x)/F

∫
dxξ(x) = 0

Z =

∫

SU(Nf )
dUo

∫

dξ e
−Sχ(Uo,ξ)

Gasser, Leutwyler PLB188 (1987)

A convenient expansion for this regime is

MP
4πF ∼

( p
4πF

)2 ∼ 1
4π(LF )2

∼ O(ε2)
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Implies a reordering of the chiral expansion:

L̃χ = L̃(0)
χ + L̃(2)

χ + ...

L̃(0)
χ =

F2

4
Tr
[

∂µU
†
ξ
∂µUξ

]

− Σ

2
Tr

[

e
iθ/NfMU0 + U

†
0M

†e−iθ/Nf
]

NLO: χ ≡ MU uµ ≡ i∂µUU
†

p-regime ε-regime

L1 〈DµU†DµU〉2 √

L2 〈DµU†DνU〉 〈DµU†DνU〉 √

L3 〈DµU†DµUDνU†DνU〉 √

L4 〈DµU†DµU〉 〈U†χ+ χ†U〉 ×
L5 〈DµU†DµU

(

U†χ+ χ†U
)

〉 ×
L6 〈U†χ+ χ†U〉2 ×
L7 〈U†χ− χ†U〉2 ×
L8 〈χ†Uχ†U + U†χU†χ〉 ×
iL9 〈Fµν

R
DµUDνU

† + F
µν
L
DµU

†DνU〉 √

L10 〈U†FµνR UFLµν〉
√
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A number of quantities have been computed to NLO in the ε-expansion: quark condensate,

meson propagators in a θ vacuum and in fixed topology

Hansen NPB345 (1990); Hansen, Leutwyler NPB350 (1991); P.H. Damgaard, et al NPB629(2002), 656(2003)

More recently three-point functions including the ∆S = 1 Hamiltonian H., Laine JHEP 0301(2003)

The matching to lattice data should provide determinations of the low-energy couplings (QCD

and weak) where chiral extrapolations are under control

Example: −〈q̄q〉ν,m,V = |ν|
mV + mΣ2V

2|ν| +O(m2)

Gasser, Leutwyler, PLB188(1987); Damgaard, et al, NPB547 (1999)
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Exploratory study L ∼ 1 − 1.5fm with GW fermions in the quenched approximation

a2Σsub
ν (a)/m = Z−1

S (αs, aµR)
(
a2Σ2V

2|ν| − C1

)

10
−4

10
−3

10
−2

10
−1

10
0

ma
0.22

0.26

0.30

0.34

0.38

0.42

0.46

a
3
Σ

su
b

m
,V

,|
Q

|/m
a

10
4
 |Q|=1 53 conf

10
4
 |Q|=2 43 conf

8
4
 |Q|=1 61 conf

8
4
 |Q|=2 18 conf

6
4
 |Q|=1 48 conf

H., Jansen, Lellouch PLB469 (1999) Hasenfratz et al NPB643 (2002)

Σ
M̄S
FSS(2GeV) = (268(12)MeV)

3
a
−1

= 1.6GeV

A conceptually cleaner extraction of Σ.
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The beast: unquenching

Several large collaborations with O(1Tflop) computer power (CPPACS, JLQCD, MILC,

UKQCD, ...) have produced in recent years many results beyond the quenched approximation

with Nf = 2 mostly:

0 2
Nf

0.86

0.88

0.90

K*(K−input)

0 2
Nf

0.96

1.00

m
 [G

eV
]

φ (K−input)

0 2
Nf

0.50

0.55

K (φ−input)

1.0

1.5

m
 [G

eV
]

Nf=2
Nf=0

K−input

N

∆

Λ
Σ

Σ*

Ξ Ξ*

Ω

 

 

O(Nf = 2)/O(Nf = 0) coll.

ms 0.7-0.8 CPPACS

FDs,Bs 1.1 CPPACS

MILC

BB,Bs ∼ 1 JLQCD

JLQCD, hep-lat/0212039

Dominated by systematics:

a ≥ 0.09fm, mπmρ = 0.6 − 0.8
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Recent simulations with Nf = 3 and an ”improved” staggered action at a = 1/8fm

corageously confront experiment:

fπ

fK

3MΞ −MN

2MBs
−MΥ

ψ(1P − 1S)

Υ(1D − 1S)

Υ(2P − 1S)

Υ(3S − 1S)

Υ(1P − 1S)

LQCD/Exp’t (nf = 0)

1.110.9

LQCD/Exp’t (nf = 3)

1.110.9

Davies et al hep-lat/0304004

These results are exciting (mπ/mρ = 0.3!) but questions of principle remain concerning the

action
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In the quenched approximation, systematics are under control for many quantities:

• Light hadron spectrum

• Strange quark physics: ms, FK

• Charm quark physics: mc, FDs, quarkonium levels

• Running coupling

• ...

These are the benchmark for unquenched simulations in the future
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The Berlin Lattice2001 wall...

0 0.2 0.4 0.6 0.8 1
m

PS
 / m

V

0

5

10

15

20

TF
lop

s ×
 ye

ar
a

-1
 = 3 GeV

a
-1

 = 2 GeV

1000 configurations with L=2fm
[Ukawa (2001)]

Next →

Now →
↑

phys

#operations

fieldconfiguration
∼ 3

[
140MeV

mπ

]6

︸ ︷︷ ︸
↓

[
L

3fm

]5 [0.1fm

a

]7

Tflopsyear

Cost(D
−1

) ∼ 1

mq

∼ 1

m2
π

⇒ Cost(HMC) ∼ 1

m2
q
∼ 1

m4
π
(?)
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Next generation of computers O(10)Tflops in a few years: mπ
mρ

∼ 0.4 − 0.6, a−1 = 2 − 3 GeV

(probably still far from physical point)

QCDOC, ApeNEXT, ...

If we do not get smarter probably another order of magnitude in computer power will be needed

to arrive to the state-of-the-art quenched simulations of today

But...

• Large potential gain by improvements in the algorithms!
Hasenbusch, Jasen hep-lat/0211024; Lüscher hep-lat/0304007

• Proliferation of improved actions: similar scaling, but might arrive there first. In many cases,

questions of principle remain to be understood...

53



Conclusions

Lattice Field Theory is a mature and active field which has the best chance to answer

non-perturbative questions in QCD and other gauge theories from first principles

Progress in recent years has been remarkable thanks to

• Exponential improvement in computer power

• Improvements in algorithms, actions and the questions being asked

Many quantities have been computed in the quenched approximation to a few per cent accuracy

with full control over systematic errors: light hadron spectrum, Λ, ms, FK,mc, FDs, etc

A similar standard in unquenched simulations will take longer due to the Berlin wall...
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New unquenched determination by JLQCD

 JLQCD 2003

 JLQCD 2000

 UKQCD-LL 2001

 G+M 97/99

 UKQCD 96/99

 Kentucky 97

Wittig’s parallel talk
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